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Abstract. The recently detected photoelectron antibunching effect is considered to be 
evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct- 
action quantum absorber theory, on the other hand, has been developed on the basis that 
the quantised field is illusory, with quantisation being required only for atoms. In this paper 
it is shown that photoelectron antibunching is readily explicable in terms of absorber theory 
and in fact is directly attributable to the quantum nature of the emitting and detecting atoms 
alone. 

The physical nature of the reduction of the wavepacket associated with the detection 
process is briefly discussed in terms of absorber theory. 

1. Introduction 

There has been much interest in the recently detected phenomenon of photon anti- 
bunching in the light emitted from single atoms acted on by an external source 
(Dagenais and Mandel 1978, Kimble et a1 1977, Carmichael and Walls 1976a, b, 
Cohen-Tannoudji 1977, see also Knight 1977). The importance of the effect is that it is 
taken as direct evidence for the intrinsic quantum nature of the electromagnetic field, 
i.e. for the existence of photons. Although there is a connection between this effect and 
the dynamic Stark effect which itself has been regarded as evidence for the quantised 
field (Kimble and Mandel 1976), it would seem that photon antibunching is a more 
rigorous and convincing test, in that it appears to be more directly attributable to the 
commutation relations of the field operators. 

In direct-action quantum absorber theory, however, there are no quantised fields or 
field commutation relations and all quantum effects must result from quantisation of the 
atoms alone (Hoyle and Narlikar 1969). It has been shown recently (Pegg 1979) that 
semiclassical absorber theory, without field quantisation, is sufficient to account for the 
dynamic Stark effect. The question thus arises: can absorber theory, without photons, 
stand up to the more rigorous and direct test of photon antibunching? 

In order to answer this question, it must be remembered, of course, that the name 
‘photon antibunching’ is only applicable within the paradigm of quantum elec- 
trodynamics and the actual effect observed can be more directly termed ‘photoelectron 
antibunching’. In this paper it is shown that photoelectron antibunching is predicted by 
absorber theory, and in this theory it is a quantum effect arising directly from the 
quantisation of the emitter and detector atoms alone. 
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2. Quantum absorber theory 

In the classical absorber theory of Wheeler and Feynman (1945) the radiative reaction 
force on an accelerated charge is not due to self-action but to the advanced response of 
the absorber particles to the retarded action of the accelerated charge. In their 
direct-action formulation of classical absorber theory Wheeler and Feynman (1949) 
showed that the concept of the field as a separate entity is not necessary. As a 
consequence, in quantum absorber theory spontaneous emission and the Lamb shift do 
not arise from a quantised self-field or from quantum fluctuations of the electromag- 
netic field, as they appear to in quantum electrodynamics, but instead from the direct 
action with the absorber atoms, i.e. all the other atoms in the universe (Hoyle and 
Narlikar 1969). This led Hoyle and Narlikar to suggest that the quantised field is merely 
an illusion, with quantisation being required for the atoms only. To account for the 
dynamic Stark effect in terms of semiclassical non-relativistic quantum absorber theory, 
Pegg (1979) used a formalism of the theory which involved two simplifications. The first 
was the representation of the absorber by a large spherical shell, centred on the emitting 
atom, composed of just sufficient two-level atoms to absorb all radiation at all 
frequencies incident on it. This was called the minimal perfect absorber. The second 
simplification involved being able to use a Hamiltonian approach by employing a time 
variable representing the retarded time instead of the usual time variable. The retarded 
time is the usual time minus r /c  where r is the distance of the particular atom from the 
emitting atom. The second simplification is possible because the response of an 
absorber (or detector) atom b to a change in the emitter atom a arrives back at a 
simultaneously with that change. Similarly the reaction of a to the responsive change in 
b is felt by b simultaneously with that responsive change. This is because a acts on b via a 
retarded action but b acts on a via an advanced action. The use of the retarded time 
variable t can thus transform the situation to one of instantaneous, in terms of t, 
interaction. 

Because of the simplicity achieved we shall again use the Hamiltonian approach in 
terms of the retarded time t and the minimal perfect absorber here. For a single atom a, 
acted on by some external driving agency, which can be classical if desired, and 
surrounded by the minimal perfect absorber, the Hamiltonian is 

XF = Xa + Xsc + %A + Xa, (1) 
where %'a is the Hamiltonian of atom a, Xsc represents the external perturbation acting 
on a, X A  is the Hamiltonian of the absorber and XaA is the direct interaction 
Hamiltonian between the atom a and the absorber. 

3. Photoelectron antibunching 

Because the usual correlation functions of quantum electrodynamics are not relevant to 
quantum absorber theory because they involve field operators, it is necessary to work 
entirely in terms of photoelectrons produced by the direct action of the emitter atom a 
on the detector. The experiment we consider is as follows. 

In addition to the system comprising the two-level atom a surrounded by its minimal 
perfect absorber and acted on by the external agency, we also consider two detector 
atoms b and c. These are two-level atoms in their ground states with the same energy 
gap w (in units f i  = 1) as atom a. When b or c makes an upward transition we assume a 
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photoelectron is produced. At time t = 0 atom c is placed inside the minimal perfect 
absorber, i.e. it is directly exposed to a. At time t = A atom cis  removed, i.e. after this 
time it is shielded from a. Similarly at a later time t = T, atom b is exposed to a until time 
t = T + A .  We wish to find the probability that both c and b produce photoelectrons. 

The complete Hamiltonian for the system is now 

%= %a f %sc + %A + %a, + %b f %c f %ab + %a, (2) 
where %b and 2, are the Hamiltonians of atoms b and c, and %ab and XaC are their direct 
interaction Hamiltonians with a. ZaC is a function of time in that it is on at t = 0 and off, 
i.e. zero, at t = A. Similarly %ab = 0 except between T and T + A. RaA takes its full value 
between t = A and t = T but is diminished slightly by the shielding effect of c or b 
between t = 0 and t = A and between T and T + A .  Xsc causes transitions in a in a 
characteristic time Cl-'. For example, Cl would be the Rabi frequency in the case of 
interaction with an oscillating electric field. causes spontaneous decay at a rate r. 
We choose the interval A such that A >> U-' but A<< Cl-', r-'. The problem is to find the 
probability for both atom c to make an upward transition IO,) + 11,) and forb to make the 
upward transition lob)' I l b )  in the time between t = 0 and t = T + A .  

The unitary time displacement operator for the complete system can be factorised as 

U ( T + A ,  0) = U ( T + A ,  T ) U ( T ,  A)U(A, 0). (3) 
The factor U (  T, A) just corresponds to the Hamiltonian 

%a+ %sc + %A f %aA f %b + %c 

because %ab = gaC = 0 during this period. We can thus write: 

U (  T, A )  = UF(T, A) exp(-i(%b + %J(T - A ) ]  

where UF(T, A )  is the time displacement operator for the Hamiltonian XF in ( l ) ,  
because %, and %', commute with XF. 

During the interval from t = 0 to t = A we have %ab = 0. Also, because A<< Cl-', r-' 
the interaction terms RSc and XaA will have only a small effect during this period. Thus, 
to a first approximation we can write 

U @ ,  0 )  = U,(& 0 )  

where Uc(A, 0) corresponds to the Hamiltonian X0 + RaC where 

%o = %a + %A + %b + %c 

and 
2 

xac = - P O  e Ua . u c  

4 7rr 

(Pegg 1979) where U is the (Schrodinger) velocity operator. Perturbation theory yields 

Uc(A, 0) = Uo(A, 0) - ik Uo(A, T ~ ) U ~ U , U ~ ( T Z ,  0) dT2 + second-order terms in U,+. . . 

where the constant k includes the factor r-' and the cosine of the angle between ua and 
U,, and 

I 
A similar expression is obtainable for U,( T + A, T )  in terms of ?&, 
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Substitution of these results into (3) gives an expression which contains one 
zero-order term in ob and vc, two first-order terms, three second-order terms plus 
higher-order terms. Because of the off-diagonal nature of Ub and uC the transition 
amplitude 

(Ail(ajl(1cl(1bl U(T+A,  o)lo'o)loc)la(O))IAO) 

will, as far as second order, have only one non-zero term, that which contains both Ub 

and zlC. Here lai) and /Ai) are eigenstates of a and the absorber, la(0)) is the state of a at 
t = 0 and /Ao) is the initial state of the absorber, in which all absorber atoms are in their 
ground states. This non-zero term is proportional to 

A 

x ( T -  All  J" Uo(A, 72)~a~cUO(72,0) ~ ~ ~ I O ~ ) I ~ , ) I ~ ( O ) ) I A O ) .  (4) 
0 

For now we write Ia(0)) = m le) + n ig) where le) and ig) are the excited and ground states 
of a, and shall discuss the state la(0)) in more detail later. Working through from the 
left, we find for the latter part of expression (4): 

. . . UdT, A)lOb)/lc)lAo) exp[-iw(T-A)12:10[m/g) exp(-iwA)v,,h+nle)u,, 

x loA e x p ( - 2 i w A + 2 i ~ ~ ~ )  d ~ ~ ]  

where U,, =(glv,le) and v10 =(lluclO).  The A in the term involving mig) comes from a 
factor 

where wc is the energy gap of atom c, which we have chosen to equal W .  Upon 
integration, with A>>&'  the term involving a le )  goes to zero, ignoring a small 
imaginary part, leaving expression (4) as 

T + A  

m exp[-iw(T+h)]ulOu,,A(Ai~(aj~(lb~ I Uo(T+A,  T1)UaUbUo(Ti, T )  dT1 
T 

x /ob)(lg)(gl+ le)(el)UF(r A)lg)lAo) (6) 

where we have inserted the closure expression for unity. Again, just as before, of the 
two terms in (6) only that involving le)(el is non-zero upon integration, and we obtain, 
neglecting the phase factors which will not affect the probability and omitting the 
constant factors U ~ O ,  vge, A, 

m(a,lg)(ALl(elUF(T, A)lg)lAo). 

The probability that c and b make upward transitions is found by multiplying this 
amplitude by its complex conjugate and summing over all final states of the atom and 
the absorber, i.e. over i and j .  In the summation over j only the term with (ail = (gi is 
non-zero and the probability is thus proportional to 

/mi2 I(A,I(eIUF(T, A)lg)lAo)12. ( 7 )  
i 
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The factor /mi2 is the quantum-mechanical probability for the atom a to be in its 
excited state at t = 0. Expression (7) has been obtained by writing la(0)) = m l e )  + nlg).  
In general, however, la (0)) would not be known so precisely and is more appropriately 
described by a statistical mixture which involves a range of values of /mi2 (see, for 
example, Glauber 1965). For such an initial-state expression (7) will be replaced by its 
average E r  all possible values of lmI2. Thus, in place of lm12 we have the ensemble 
average lm 1' which represents the combined statistical and quantum-mechanical prob- 
ability for the atom to be in its excited state at t = 0. 

The second factor in (7) is just the probability for an upward transition of a from 1s) 
to le) in the interval between the detection times, under the combined action of the 
external agency and spontaneous emission (Pegg 1979). Thus, as the time interval 
T - A approaches zero the probability of two-photoelectron detection approaches zero 
also, producing the antibunching effect. 

4. Detectors 

The two-level atoms b and c were chosen as detectors for simplicity in directly 
illustrating that quantum absorber theory does give the photoelectron antibunching 
effect. To derive the dynamic Stark spectrum from absorber theory such a two-level 
atom was used as a detector finely tuned to its Bohr frequency (Pegg 1979). Because in 
the present paper two-level atoms are also being used to detect what is effectively a 
frequency-integrated signal from the atom a, it is worth discussing briefly the means by 
which the same type of atom can accomplish these two very different functions. 
Basically this is due to the different lengths of observation time. In both cases the 
probability for an upward transition in a detector atom is, from (5), proportional to the 
expression 

loA exp[i(wc- U).] dT x cc (8) 

where w c  and w are the energy gaps of the detector atom and the atom a. This 
expression significantly differs from zero only for /ac-  w /  < A-'. For the dynamic Stark 
effect the observation time A is very long, which makes the detector atom very 
frequency-selective. For the antibunching effect we chose, for convenience, an atom 
with w c  = w ; however, the result obtained from (4) is not appreciably altered if we let wc 
differ from o in ( 5 )  by amounts up to A-', which is quite large for the small observation 
time in this experiment, i.e. A<< K1, I--'. Thus the occurrence of an upward transition 
in the detector specifies the frequency of the signal from a only to within this order of 
uncertainty. This, of course, is just in accord with Heisenberg's uncertainty principle. In 
effect, the short observation time destroys the selectivity, i.e. broadens the frequency 
response of the detecting atom to give a bandwidth of order A-'. 

Another point, which can be noticed from (6), is that the upward transition 
probability in one particular detector atom in time A is proportional to A2, and 
consequently although the two-level detector does show the antibunching eff ect it is not 
an ideal detector in the sense described by Glauber (1965), i.e. it does not give rise to a 
A-independent counting rate. We could obtain such an ideal detector by replacing the 
single excited state 11,) in the detector atom c by a large number of evenly and closely 
spaced states Ik,) which have (kclu 10) reasonably constant, and similarly replace atom b. 
This in fact would correspond more closely to detectors actually used in practice. The 
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result for such a system is obtainable by replacing (Ic[ and (1bl in (4) by (kc [  and (zb/ and 
summing, or integrating, the final probability obtained over k and z .  Expression (8) 
with wc replaced by W k  would no longer equal A', and it is not difficult to show that upon 
integration over W k  we obtain a factor proportional to A instead, provided the range of 
values of (w - w k )  is centred around zero and has a breadth greater than A-'. The 
summation over k and z which accompanies the use of such more realistic detecting 
atoms also naturally gives a larger signal than that produced by two-level detectors, but 
importantly leaves unaffected the factor (7) in the final result for the probability, which 
is the characteristic of the antibunching effect. Thus absorber theory predicts photo- 
electron antibunching from both two-level and ideal detecting atoms. 

5. Conclusions 

The simplicity with which direct action quantum absorber theory displays the photo- 
electron antibunching effect allows us to interpret this effect as a quantum effect, not of 
the electromagnetic field but of the source and detector atoms alone. In fact, the 
antibunching effect, like the dynamic Stark effect, can not be taken as evidence even for 
the existence of the field. This lends further support to the suggestion of Hoyle and 
Narlikar (1969) concerning the illusory nature of the quantised field. 

An interesting aspect of the absorber theory approach is the light it sheds on the 
nature of the reduction of the wavepacket pointed out by Cohen-Tannoudji (1977). In 
absorber theory an upward transition in the detector atom c, which constitutes the 
measurement process, can be interpreted as the actual physical cause of the cor- 
responding reversion of atom a to its ground state despite the fact that the transition in c 
occurs after a has reverted to its ground state. This is because a physically stimulates c 
by retarded action, eliciting a response from c which acts physically on a by means of 
advanced potential action. This self-consistent cycle by which a transition in a causes a 
transition in c which causes the original transition in a has been discussed by Hoyle and 
Narlikar (1968). 

References 

Carmichael H J and Walls D F 1976a J. Phys. B: Atom. Molec. Phys. 9 L43 
- 1976b J. Phys. B: Atom. Molec. Phys. 9 1199-219 
Cohen-Tannoudji C 1977 Proc. 2nd Laser Conf., Megeve (Berlin: Springer-Verlag) 
Dagenais M and Mandel L 1978 Phys. Rev. A 18 2217-28 
Glauber R J 1965 Quantum Optics and Electronics, Les Houches ed C deWitt, A Blandin and C Cohen- 

Hoyle F and Narlikar J V 1968 Nature 219 340-1 
- 1969 Ann. Phys., NY 54 207-39 
Kimble H J, Dagenais M and Mandel L 1977 Phys. Reu. Lett. 39 691 
Kimble H J and Mandel L 1976 Phys. Rev A 13 2123-44 
Knight P 1977 Nature 269 647 
Pegg D T 1979 Ann. Phys., N Y  118 1-17 
Wheeler J A and Feynman R P 1945 Rev. Mod. Phys. 17 157-81 
- 1949 Rev. Mod. Phys. 21 425-33 

Tannoudji (New York: Gordon and Breach) pp 64-108 


